Maximum Entropy for Image Segmentation based on an Adaptive Particle Swarm Optimization

نویسنده

  • Chengming Qi
چکیده

Image segmentation is applied widely to image processing and object recognition. Threshold segmentation is a simple and important method in grayscale image segmentation. Information entropy can characterize the grayscale in formation of image and distinguish between the objectives and background. In this paper, we use exponential entropy instead of logarithmic entropy and propose a new multilevel thresholds image segmentation method based on maximum entropy and adaptive Particle Swarm Optimization (APSO). This proposed algorithm takes full account of the spatial information and the gray information to decrease the computing quantity. The APSO takes advantage of the characteristics of particle swarm optimization, through adaptively adjust particles flying speed to improve evolutional process of basic PSO. Standard test images and remote sensing image are segmented in experiment and compared with other related segmentation methods. Experimental results show that the APSO method can quickly converge with high computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Entropy Based MR Image Segmentation Using Particle Swarm Optimization

An image segmentation technique based on fuzzy entropy is applied for MR brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR images. The image is classified into two membership functions, whose member functions of the fuzzy region are Z-function and S-function. The optimal parameters of t...

متن کامل

Brain tumor segmentation in MRI images using integrated modified PSO-fuzzy approach

An image segmentation technique based on maximum fuzzy entropy is applied for Magnetic Resonance (MR) brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR brain images. The MR brain image is classified into two Membership Function (MF), whose MFs of the fuzzy region are Z-function and S-fu...

متن کامل

A Type II Fuzzy Entropy Based Multi-Level Image Thresholding Using Adaptive Plant Propagation Algorithm

One of the most straightforward, direct and efficient approaches to Image Segmentation is Image Thresholding. Multi-level Image Thresholding is an essential viewpoint in many image processing and Pattern Recognition based real-time applications which can effectively and efficiently classify the pixels into various groups denoting multiple regions in an Image. Thresholding based Image Segmentati...

متن کامل

A New Image Threshold Segmentation based on Fuzzy Entropy and Improved Intelligent Optimization Algorithm

Image segmentation is one of the key techniques in the field of image understanding and computer vision. To determine the optimal threshold in image segmentation, an effective image threshold segmentation method based on fuzzy logic is presented. A new kind of fuzzy entropy is defined, that is not only related to the membership, but also related to probability distribution. According to the max...

متن کامل

Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO)

The 2-D maximum entropy method not only considers the distribution of the gray information, but also takes advantage of the spatial neighbor information with using the 2-D histogram of the image. As a global threshold method, it often gets ideal segmentation results even when the image s signal noise ratio (SNR) is low. However, its time-consuming computation is often an obstacle in real time a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014